If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10v^2+29v+10=0
a = 10; b = 29; c = +10;
Δ = b2-4ac
Δ = 292-4·10·10
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-21}{2*10}=\frac{-50}{20} =-2+1/2 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+21}{2*10}=\frac{-8}{20} =-2/5 $
| 3.4x+6.3=-1.7+47.1 | | 180=3x+17+4x+5 | | 20+6h=-7h-20+15h | | 4(2a-3)+2(a-4)=10 | | -6(x-14=-102 | | 12x-18=-8x+22 | | -14=1+4x+x | | 20u-9=19u-16 | | 41-x)+3x=-2(x+1) | | 42r=18 | | 5j-(-9)=49 | | x/6-8.3=5.5 | | 180=86+2x | | 42=-6(4+6x)+3(-4-x) | | 27x=133 | | 180=9x+7+106 | | u+4.92=8.62 | | 42=-6(4+6x)+3(-4-x | | 6f-(-4)=22 | | 133=27x | | (3x+5)(10x−7)=180 | | -3u-27=7(u-1) | | x/4×=12 | | -18x-12=42 | | 11-4k=-3k | | –6s+7=–5s | | -(-2.50x)+1.25=6.25 | | 180=4+11x+12x-1 | | 16q+-15q=-3 | | 7h=6+8h | | 13y-3=28+5y | | 9x-100+4x=180 |